
Distributed Monitoring and 
Information Services for the Grid

Jennifer M. Schopf

Argonne National Laboratory

NeSC

Feb 20, 2006



What is a Grid

Resource sharing
Computers, storage, sensors, networks, …

Sharing always conditional: issues of trust, policy, 
negotiation, payment, …

Coordinated problem solving
Beyond client-server: distributed data analysis, 
computation, collaboration, …

Dynamic, multi-institutional virtual orgs
Community overlays on classic org structures

Large or small, static or dynamic



Why is this hard/different?

Lack of central control
Where things run

When they run

Shared resources
Contention, variability

Communication
Different sites implies different sys admins, 
users, institutional goals, and often “strong 
personalities”



So why do it?

Computations that need to be done with a 
time limit

Data that can’t fit on one site

Data owned by multiple sites

Applications that need to be run bigger, 
faster, more



What Is Grid Monitoring?

Sharing of community data between sites 
using a standard interface for querying and 
notification

A way to discover what services and 
resources are available to use

A way to understand the status/attributes 
of those services

A system to warn you when things fail



Monitoring Use cases

PPGD/GriPhyN/iVDGL monitoring group (2002-
2004) found roughly 4 categories

Health of system (NW, servers, cpus, etc)
Resource selection
System upgrade evaluation (have systems reached 
capacity)
Application-specific progress tracking

First three types need roughly the same 
information
Fourth is user-specific and application specific – no 
general solution yet

http://www.mcs.anl.gov/~jms/pg-monitoring



Health of the System
“Is the Grid up?”

Brief Description
User of a grid replication service finds actions are 
much slower than normal 
Not sure if problem is with network, disk, CPU end 
points, or something inbetween
Need archive data for historical, current streaming 
for comparison

Performance events/sensors required
Host monitoring - CPU,memory, disk
Network path monitoring - bw, lat., traceroute
GridFTP monitoring
TCP stack monitoring (web 100)
Possibly switch/router monitoring
May want different data for user vs sys admins



Resource Selection

Brief Description
User/Broker wants to decide where to run a job
Sites advertise cluster information for grid-level 
scheduling decisions
Also need data about storage locations and access 
speeds
Information must be summarized for advertising to 
Grid, scalability is key issue

Performance events/sensors required
Static: number of compute nodes, cpu type and 
speed, OS, installed sw, available storage systems
Dynamic:Queue lengths, large file transfer times



What should
monitoring systems look like?

All sensors must be non-intrusive

All data is small, and must be “as timely as 
possible”

All data must be kept for a long time (years), and 
must be accessible in many ways

No one really knows how many sensors will be 
accessed at one time (or reporting to a higher 
level service), or how often they will be accessed

Security isn’t of concern – YET – except for job 
data



Monitoring Systems (2)

Line between monitoring system and 
higher level services isn’t always clear

Archiving

Summary statistics

Predictions

Error detection

Alarms/notification



OUTLINE

Grid Monitoring and Use Cases
MDS4

Index Service
Trigger Service
Information Providers

Deployments 
Metascheduling data for TeraGrid
Service failure warning for ESG

Performance Numbers



What is MDS4?

Grid-level monitoring system used most often for 
resource selection

Aid user/agent to identify host(s) on which to run an 
application

Uses standard interfaces to provide publishing of 
data, discovery, and data access, including 
subscription/notification

WS-ResourceProperties, WS-BaseNotification, WS-
ServiceGroup

Part of the Globus Toolkit v4
Functions as an hourglass to provide a common 
interface to lower-level monitoring tools



GLUE Schema Attributes
(cluster info,
queue info, FS info)

Information Users :
Schedulers, Portals, Warning Systems, etc.

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and 
Nagios) Services

(GRAM, RFT, RLS)

Queueing systems
(PBS, LSF, Torque)

WS standard 
interfaces for 
subscription, 
registration, 
notification



MDS4 Uses
Web Service Standards

WS-ResourceProperties
Defines a mechanism by which Web Services can 
describe and publish resource properties, or sets of 
information about a resource
Resource property types defined in service’s WSDL
Resource properties can be retrieved using WS-
ResourceProperties query operations

WS-BaseNotification
Defines a subscription/notification interface for 
accessing resource property information

WS-ServiceGroup
Defines a mechanism for grouping related resources 
and/or services together as service groups



MDS4 Components

Higher level services
Index Service – a way to aggregate data
Trigger Service – a way to be notified of changes
Both built on common aggregator framework

Information providers
Monitoring is a part of every WSRF service
Non-WS services can also be used

Clients
WebMDS

All of the tool are schema-agnostic, but 
interoperability needs a well-understood common 
language



MDS4 Index Service

Index Service is both registry and cache
Subscribes to information providers
Publishes (as resource properties)

Datatype and data provider info, like a registry
Last value of data, like a cache

In memory default approach, DB backing store 
currently being developed to allow for very large 
indexes
Soft-state registration
Can be set up for a site or set of sites, a specific 
set of project data, or for user-specific data only
Can be a multi-rooted hierarchy



Index Service Facts 1

No single global Index provides information 
about every resource on the Grid

No person in the world is part of every VO!
Hierarchies or special purpose index’s are common
Each virtual organization will have different policies 
on who can access its resources

The presence of a resource in an Index makes 
no guarantee about the availability of the 
resource for users of that Index

Ultimate decision about whether to use the resources 
is left to direct negotiation between user and rsc
MDS does not need to keep track of policy 
information (something that is hard to do concisely) 
Rscs do not need to reveal their policies publicly



Index Service Facts 2

MDS has a soft consistency model
Published information is recent, but not guaranteed 
to be the absolute latest
Load caused by information updates is reduced at 
the expense of having slightly older information
Free disk space on a system 5 minutes ago rather 
than 2 seconds ago.

Each registration into an Index Service is subject 
to soft-state lifetime management

All registrations has expiry times and must be 
periodically renewed
Index is self-cleaning, since outdated entries 
disappearing automatically



MDS4 Trigger Service

Subscribe to a set of resource properties

Evaluate that data against a set of pre-
configured conditions (triggers)

When a condition matches, email is sent to 
pre-defined address

Similar functionality in Hawkeye



Aggregator Framework
General framework for building services that collect 
and aggregate data

Index and Trigger service both use this
1) Common interface implemention

Java class that implements an interface to collect 
XML-formatted data from information providers
Implements WS-RP and WS-N for query and 
subscription

2) Common configuration mechanism
Maintain information about which information 
providers to use and their associated parameters
Specify what data to get, and from where 

3) Services are self-cleaning
Each registration has a lifetime
If a registration expires without being refreshed, it 
and its associated data are removed from the server



Information Providers

Data sources for the higher level services 
(eg. Index, Trigger)
WSRF-compliant service

WS-ResourceProperty for Query source
WS-Notification mechanism for Subscription 
source

Other services/data sources
Executable program that obtains data via 
some domain-specific mechanism for 
Execution source.



Information Providers:
Cluster and Queue Data

Interfaces to Hawkeye, Ganglia, CluMon
Not WS so these are Execution Sources

Basic host data (name, ID), processor information, 
memory size, OS name and version, file system 
data, processor load data

Some condor/cluster specific data

Interfaces to PBS, Torque LSF queue system
Queue information, number of CPUs available and 
free, job count information, some memory statistics 
and host info for head node of cluster



Information Providers:
GT4 Services

Every WS built using GT4 core
ServiceMetaDataInfo element includes start time, 
version, and service type name

Reliable File Transfer Service (RFT)
Service status data, number of active transfers, 
transfer status, information about the resource 
running the service

Community Authorization Service (CAS)
Identifies the VO served by the service instance

Replica Location Service (RLS)
Note: not a WS
Location of replicas on physical storage systems 
(based on user registrations) for later queries



WebMDS

Site 3

App B
Index
App B
Index

Site 3
Index
Site 3
Index

Rsc 3.a

RLS

I

Rsc 3.b

RLS

II

Rsc 3.b

Site 1

West Coast
Index

West Coast
Index

Trigger
Service

Rsc 2.a

HawkeyeHawkeye

Rsc 2.b

GRAMGRAMII

Site 2
Index
Site 2
Index
Site 2
Index

Ganglia/LSF

Rsc 1.c

GRAM
(LSF)I

Ganglia/LSFGanglia/LSF

Rsc 1.c

GRAM
(LSF)
GRAM
(LSF)II

Rsc 1.a

Ganglia/PBS

Rsc 1.b

GRAM
(PBS)I

Ganglia/PBSGanglia/PBS

Rsc 1.b

GRAM
(PBS)
GRAM
(PBS)II

Site 1
Index
Site 1
Index
Site 1
Index

RFTRFT

Rsc 1.d

II

AA

BB

CC

DD

EE

VO Index

FF

Trigger action



WebMDS User Interface

Web-based interface to WSRF resource property 
information
User-friendly front-end to the Index Service
Uses standard resource property requests to query 
resource property data
XSLT transforms to format and display them
Customized pages are simply done by using HTML 
form options and creating your own XSLT 
transforms
Sample page:

http://mds.globus.org:8080/webmds/webm
ds?info=indexinfo&xsl=servicegroupxsl



WebMDS Service









Any questions before I walk 
through two current deployments?

Grid Monitoring and Use Cases
MDS4

Index Service
Trigger Service
Information Providers

Deployments
Metascheduling Data for TeraGrid
Service Failure warning for ESG

Performance Numbers



Working with TeraGrid

Large US project across 9 different sites
Different hardware, queuing systems and 
lower level monitoring packages

Starting to explore MetaScheduling
approaches

GRMS (Poznan)
W. Smith (TACC)
K. Yashimoto (SDSC)
User Portal

Need a common source of data with a 
standard interface for basic scheduling info



Cluster Data

Provide data at the subcluster level
Sys admin defines a subcluster, we query 
one node of it to dynamically retrieve 
relevant data

Can also list per-host details

Interfaces to Ganglia, Hawkeye, CluMon, 
and Nagios available now

Other cluster monitoring systems can write 
into a .html file that we then scrape



Cluster Info

UniqueID

Benchmark/Clock 
speed

Processor

MainMemory

OperatingSystem

Architecture

Number of nodes in 
a cluster/subcluster

TG specific Node 
properties

StorageDevice
Disk names, mount 
point, space available



Data to collect: Queue info

LRMSType

LRMSVersion

DefaultGRAMVersion
and port and host

TotalCPUs

Status (up/down)

TotalJobs (in the 
queue)

RunningJobs

WaitingJobs

FreeCPUs

MaxWallClockTime

MaxCPUTime

MaxTotalJobs

MaxRunningJobs

Interface to PBS (Pro, Open, Torque), LSF



How will the data be accessed?

Java and command line APIs to a common 
TG-wide Index server

Alternatively each site can be queried 
directly

One common web page for TG
http://snipurl.com/j24r

Query page is next!





Status

Currently have a demo system up
Queuing data from SDSC and NCSA
Cluster data using CluMon interface at 
NCSA
Basic WebMDS interface

Being deployed more widely for TeraGrid 
this week
General patch for 4.0.1 deployments 
should be available soon – let me know if 
you’re interested! 



ESG use of MDS4 Trigger Service

Need a way to notify system 
administrators and users what the 
status of their services are
In particular, interested in

Replica Locatoin Service (RLS)
Storage Resource Manager service 
(SRM)
OpenDAP
Web Server (HTTP)
GridFTP fileservers



Trigger Service and ESG Cont.

The Trigger service periodically checks 
to see if services are up and running

If a service is gone down or is 
unavailable for any reason, an action 
script is executed

Sends email to administrators 

Update portal status page

Been in use for over a year (used GT3 
version previously)





OUTLINE

Grid Monitoring and Use Cases
MDS4

Index Service
Trigger Service
Information Providers

Deployments
Metascheduling Data for TeraGrid
Service Failure warning for ESG

Performance Numbers



MDS4 Stability

Vers. Index
Size

Time 
up

(Days)

Queries
Processed

Query
Per
Sec.

Round-
trip

Time 
(ms)

4.0.1 25 66+ 81,701,925 14 69

4.0.1 50 66+ 49,306,104 8 115

4.0.1 100 33 14,686,638 5 194

4.0.0 1 14 93,890,248 76 13

4.0.0 1 96 623,395,877 74 13



Scalability Experiments

MDS index
Dual 2.4GHz Xeon processors, 3.5 GB RAM
Sizes: 1, 10, 25, 50, 100

Clients
20 nodes also dual 2.6 GHz Xeon, 3.5 GB RAM
1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 384, 512, 
640, 768, 800

Nodes connected via 1Gb/s network
Each data point is average of 8 minutes

Ran for 10 mins but first 2 spent getting clients up 
and running
Error bars are SD over 8 mins

Experiments by Ioan Raicu, U of Chicago, using 
DiPerf



1

10

100

1,000

10,000

100,000

0 100 200 300 400 500 600 700 800
Concurent Load (# of clients)

Th
ro

ug
hp

ut
 (q

ue
rie

s 
/ m

in
)

Index Size = 1
Index Size = 100 (MDS2)
Index Size = 10
Index Size = 25
Index Size = 50
Index Size = 100
Index Size = 250
Index Size = 500

MDS4 Throughput



MDS4 Response Time

1

10

100

1,000

10,000

100,000

1,000,000

0 100 200 300 400 500 600 700 800
Concurent Load (# of clients)

R
es

po
ns

e 
Ti

m
e 

(m
s)

Index Size = 500
Index Size = 250
Index Size = 100
Index Size = 50
Index Size = 25
Index Size = 10
Index Size = 100 (MDS2)
Index Size = 1



Index Maximum Size

Heap
Size (MB)

Approx. Max.
Index Entries

Index
Size (MB)

64 600 1.0
128 1275 2.2
256 2650 4.5
512 5400 9.1

1024 10800 17.7
1536 16200 26.18



Performance

Is this enough?
We don’t know!

Currently gathering up usage statistics to 
find out what people need

Bottleneck examination
In the process of doing in depth 
performance analysis of what happens 
during a query

MDS code, implementation of WS-N, WS-
RP, etc

(These numbers are in an HPDC submission)



Summary

MDS4 is a WS-based Grid monitoring 
system that uses current standards for 
interfaces and mechanisms

Available as part of the GT4 release
Currently in use for resource selection and 
fault notification

Initial performance results aren’t awful –
we need to do more work to determine 
bottlenecks



Where do we go next?

Extend MDS4 information providers
More data from GT4 WS

GRAM, RFT, CAS

More data from GT4 non-WS components
RLS, GridFTP

Interface to other data sources
Inca, GRASP

Interface to archivers
PinGER, NetLogger

Additional scalability testing and development

Additional clients



Other Possible Higher
Level Services

Archiving service
The next high level service we’ll build

Looking at Xindice as a possibility

Site Validation Service (ala Inca)

Prediction service (ala NWS)

What else do you think we need?



Contributing to MDS4

Globus is opening up it’s development 
environment – similar to Apache Jakarta

MDS4 will be a project in the new scheme

Contact me for more details
jms@mcs.anl.gov

http://dev.globus.org



Thanks

MDS4 Team: Mike D’Arcy (ISI), Laura Pearlman (ISI), 
Neill Miller (UC), Jennifer Schopf (ANL)

Students: Ioan Raicu, Xuehai Zhang

This work was supported in part by the Mathematical, 
Information, and Computational Sciences Division 
subprogram of the Office of Advanced Scientific 
Computing Research, U.S. Department of Energy, under 
contract W-31-109-Eng-38, and NSF NMI Award SCI-
0438372. This work also supported by DOESG SciDAC
Grant, iVDGL from NSF, and others.



For More Information

Jennifer Schopf
Jms@mcs.anl.gov
http://www.mcs.anl.gov/~jms

Globus Toolkit MDS4
http://www.globus.org/toolkit/mds

Monitoring and Discovery in a Web Services 
Framework: Functionality and Performance of 
the Globus Toolkit's MDS4 

http://www.mcs.anl.gov/~jms/Pubs/ 
mds4.hpdc06.pdf


	Distributed Monitoring and Information Services for the Grid
	What is a Grid
	Why is this hard/different?
	So why do it?
	What Is Grid Monitoring?
	Monitoring Use cases
	Health of the System�“Is the Grid up?”
	Resource Selection
	What should�monitoring systems look like?
	Monitoring Systems (2)
	OUTLINE
	What is MDS4?
	MDS4 Uses�Web Service Standards
	MDS4 Components
	MDS4 Index Service
	Index Service Facts 1
	Index Service Facts 2
	MDS4 Trigger Service
	Aggregator Framework
	Information Providers
	Information Providers:�Cluster and Queue Data
	Information Providers:�GT4 Services
	WebMDS User Interface
	WebMDS Service
	Any questions before I walk through two current deployments?
	Working with TeraGrid
	Cluster Data
	Cluster Info
	Data to collect: Queue info
	How will the data be accessed?
	Status
	ESG use of MDS4 Trigger Service
	Trigger Service and ESG Cont.
	OUTLINE
	MDS4 Stability
	Scalability Experiments
	MDS4 Throughput
	MDS4 Response Time
	Index Maximum Size
	Performance
	Summary
	Where do we go next?
	Other Possible Higher�Level Services
	Contributing to MDS4
	Thanks
	For More Information

